2 resultados para Biomechanics

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of smaller surgical incisions has become popularized for total hip arthroplasty (THR) because of the potential benefits of shorter recovery and improved cosmetic appearance. However, an increased incidence of serious complications has been reported. To minimize the risks of minimally invasive approaches to THR, we have developed an experimental approach which enables us to evaluate risk factors in these procedures through cadaveric simulations performed within the laboratory. During cadaveric hip replacement procedures performed via posterior and antero-lateral mini-incisions, pressures developed between the wound edges and the retractors were approximately double those recorded during conventional hip replacement using Charnley retractors (p < 0.01). In MIS procedures performed via the dual-incision approach, lack of direct visualisation of the proximal femur led to misalignment of broaches and implants with increased risk of cortical fracture during canal preparation and implant insertion. Cadaveric simulation of surgical procedures allows surgeons to measure variables affecting the technical success of surgery and to master new procedures without placing patients at risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Hydrostatic intestinal edema initiates a signal transduction cascade that results in smooth muscle contractile dysfunction. Given the rapid and concurrent alterations in the mechanical properties of edematous intestine observed with the development of edema, we hypothesize that mechanical forces may serve as a stimulus for the activation of certain signaling cascades. We sought to examine whether isolated similar magnitude mechanical forces induced the same signal transduction cascades associated with edema. METHODS: The distal intestine from adult male Sprague Dawley rats was stretched longitudinally for 2 h to 123% its original length, which correlates with the interstitial stress found with edema. We compared wet-to-dry ratios, myeloperoxidase activity, nuclear signal transduction and activator of transcription (STAT)-3 and nuclear factor (NF)-kappa B DNA binding, STAT-3 phosphorylation, myosin light chain phosphorylation, baseline and maximally stimulated intestinal contractile strength, and inducible nitric oxide synthase (iNOS) and sodium hydrogen exchanger 1-3 messenger RNA (mRNA) in stretched and adjacent control segments of intestine. RESULTS: Mechanical stretch did not induce intestinal edema or an increase in myeloperoxidase activity. Nuclear STAT-3 DNA binding, STAT-3 phosphorylation, and nuclear NF-kappa B DNA binding were significantly increased in stretched seromuscular samples. Increased expression of sodium hydrogen exchanger 1 was found but not an increase in iNOS expression. Myosin light chain phosphorylation was significantly decreased in stretched intestine as was baseline and maximally stimulated intestinal contractile strength. CONCLUSION: Intestinal stretch, in the absence of edema/inflammatory/ischemic changes, leads to the activation of signaling pathways known to be altered in intestinal edema. Edema may initiate a mechanotransductive cascade that is responsible for the subsequent activation of various signaling cascades known to induce contractile dysfunction.